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Singularity clustering in the Duffing oscillator 
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Abstract. An asymptotic and numerical study is made of the singularity structure, in the 
complex t-plane, of the Duffing oscillator. The presence of logarithmic terms in the local 
psi-series expansion, of the form t 4  In t ,  leads to a multisheeted singularity structure of 
great complexity. This structure is built recursively from an elemental pattern which takes 
the form of four-armed ‘stars’ of singularities. This construction is deduced analytically 
from the properties of the mapping z = t4 In f and is confirmed quite accurately numerically. 
A systematic resummation of the psi series, in terms of Lame functions, is developed. This 
series exhibits the same analytic structure at all orders and provides a ‘semi-local’ analytical 
representation of the solution which is apparently valid even in the chaotic regime. 

1. Introduction 

The study of the analytic structure of dynamical systems-in particular the singularities 
exhibited by the solution in the complex time domain-can provide a variety of insights 
into the properties of the system. Use of what is now termed the ‘Painlev6 property’, 
namely the property that the only movable singularities exhibited by the solution are 
ordinary poles, can sometimes provide a direct means of identifying integrable cases 
of  a given system. (A  semi-historical review may be found in [ 13.) However, the study 
of analytic structure need not be restricted to the search for integrable cases only and 
the singularity structure of non-integrable systems appears to have a rich content. 

In a detailed study of the Lorenz equations, Tabor and  Weiss [ 2 ]  (hereafter referred 
to as I )  found that in the non-integrable regimes the solution could be formally 
represented near singularities in terms of psi series involving logarithmic terms. By 
identifying a certain subset of coefficients in these expansions they were able to obtain, 
through a variety of transformations, an  asymptotic picture of the solution in the 
neighbourhood of a given singularity. In a subsequent numerical study of the Henon- 
Heiles system Chang et af [3] found that in certain system parameter regimes, for 
which the singularities have complex exponents, the singularities clustered in remark- 
able self-similar spirals. A detailed theoretical analysis of this phenomenon by Chang 
et al [4] (hereafter referred to as 11) was able to provide an accurate description of 
this geometry. Spirals of singularities were subsequently observed and similarly ana- 
lysed in a study of the stationary solutions of Kuramoto’s equation by Thual and 
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Frisch [5] and in a certain Hamiltonian system by Yoshida [6]. Despite the apparent 
self-similarity of the structures observed in I1 it has been pointed out by Bessis and 
Chafee [7] that care should be taken in concluding that they correspond to a (possibly 
fractal) natural boundary since the singularities are distributed over an immensely 
complicated multi-sheeted Riemann surface. 

The question of the precise relationship between actual real time behaviour and 
complicated singularity structures has also been addressed. A study of a forced 
non-linear Langevin equation by Morf and Frisch [8] analysed the influence of the 
singularities nearest the real axis in terms of ‘intermittent’ excitations of the real 
solution. Bountis and Segur [9] and Bountis et a1 [ lo]  have suggested that the 
appearance of (widespread) chaos may be related to the influence of logarithmic branch 
points and the latter have emphasised the importance of singularity ‘condensation’ in 
this process. A similar point of view has been adopted by Dombre er a1 [ l l ]  who 
suggest, on the basis of their analysis of the so-called ABC flows, that recursive 
singularity clustering is a hallmark of non-integrability. We also remark that a ‘con- 
densation’ or ‘confluence’ of simple poles in the complex domain occurs in a variety 
of physical contexts, such as statistical mechanics [ 121, fluid mechanics [ 131, combus- 
tion [14], etc. Furthermore Ruelle [15] has recently suggested the value of studying 
the analytic structure of Fourier transforms-rather than of the signal itself-in which 
case results by Ruelle and Pollicott exclude any clustering in a meromorphic strip; 
even for chaotic systems. 

In this paper our aim is to make a detailed study of the types of singularity clustering 
that can occur for logarithmic singularities-similar in spirit to the study of clustering 
given for complex exponent singularities in 11. We choose as our model the Duffing 
equation 

x + A x + 4 x 3 = ~ F ( f )  (1.1) 

where A is a damping coefficient and E the coupling to the external field F (  [)-which 
is taken to be an entire function. This system has proved to be a useful model for a 
variety of physical processes such as beam buckling [ 161 and non-linear circuits [ 171 
as well as a popular model for studies of chaotic dynamics [18]. Furthermore it is 
probably the simplest possible case suitable for our purposes for which detailed 
analytical (and numerical) studies are possible. This is desirable since logarithmic 
singularities are present in such important systems as the Lorenz equations, for which 
the analysis in I is very similar but could not be pushed as far as in the present work. 
Indeed, here we are able to demonstrate (in § §  3 and 4) a star-like, recursive singularity 
structure different from the spiralling structure found in 11. This is based on a detailed 
asymptotic study of the associated psi series. In  0 5 we show that this asymptotics is 
itself only the first term in an expansion made up of Jacobi and Lame functions. This 
expansion provides a systematic way of partially resumming the psi series and the 
singularity structure appears to be the same at any order of this expansion. We feel 
that these results place our numerical results on firmer ground-even if the exact 
convergence properties of all these expansions are still unknown. 

2. The psi-series expansion 

For convenience we write out the four cases of the Duffing equation that are embraced 
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by our analysis. They are 

x + t x 3 = o  (2.1) 

i + ~i + t x 3  = 0 (2.2) 

X + $ X ~ = E F ( ~ )  (2.3) 

x+ Ax+ix3= E F ( t ) .  (2.4) 

Obviously (2.1), (2.2) and (2.3) are just subcases of (2.4) but for reference purposes 
it is useful to list them separately. The basic properties of these systems may be 
summarised as follows. 

(2.1). This is a conservative Hamiltonian system which can be integrated exactly 
in terms of :he Jacobi elliptic functions. The motion is completely regular. 

(2.2). This non-Hamiltonian system has a stable spiral point at the origin to which 
all initial conditions tend in the limit t + 00. Although the motion is completely regular 
we are not aware of an  explicit quadrature to provide an  ‘exact’ solution to the equations 
of motion. 

(2.3). This is a non-conservative Hamiltonian system. For sufficiently strong coup- 
ling, E ,  to an external periodic field, e.g. F ( t ) = c o s ( f l r ) ,  the solutions can exhibit 
chaotic behaviour. 

(2.4).  The presence of both dissipation and  driving can lead to the appearance of 
a stable limit cycle. As E is increased this cycle can undergo ‘universal’ period doubling 
bifurcations leading to a ‘strange attractor’. Detailed dynamical studies have been 
made by Ueda [18]. 

We remark that the traditional Duffing equation usually contains a linear term in 
the restoring force-however this neither affects the dynamics nor our analysis. We 
also note that the A dependence of (2.4) can be scaled away. Using the scalings 
x ( t )  = Ay(At), F ( t / A )  = G ( t )  and 6 = & / A 3  we obtain 

y + J’ + ;y3 = 6G( t ). 

For computational purposes it is convenient to work with the unscaled equations. 
It is an  easy matter to show that about an arbitrary movable singularity to, in the 

complex t-plane, the solution to (2.1) may be locally represented as a simple Laurent 
series of the form 

X 

x ( t )  = 1 ai( t - to)’-’. 
, = 0  

Direct substitution of (2.5) into the equations of motion leads to the recursion relations 
for the a, 

a,( j + l ) ( j  -4)  = -t c ~ , - ~ - , a ~ a ,  O < k + l ~ j , O ~ k , l < j  (2.6) 
k /  

where a. = 2i, a ,  = a, = a3 = 0, a4 = arbitrary coefficient, etc. The arbitrary pole position 
to and coefficient a4 constitute the two pieces of arbitrary data consistent with a local 
representation of the general solution to the second-order equation (2.1 1. As mentioned 
above, this equation can be solved exactly in terms of the Jacobi elliptic functions and 
the movable singularities in the complex t-plane form a regular lattice of first-order 
poles. 

The introduction of either dissipation (2.2) or driving (2.3) (or, of course, both 
(2.4)) leads to the breakdown of the Laurent series (2.5) since it becomes no longer 
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possible to introduce an arbitrary coefficient at j = 4.  It is again a standard matter 
(see, for example, Bender and Orszag [ 191) to rectify this problem by adding logarithmic 
terms to the expansion thereby obtaining the psi series 

( 2 . 7 )  

Computation of the recursion relations for the a,k is tedious but straightforward and 
one obtains, for the general case (2 .4 ) ,  

aJk ( ( j  - l ) ( j  - 2 )  + 4k( 2j + 4k -3)) + U,-4,k+l(  k + 1 ) ( 2 j  + 8 k  - 3) 

+ aJ-g,k+2( k +  l ) ( k + 2 ) +  hUJ-1 ,k( j+4k-2)  AaJ-s,k+l(k+ 1 )  

= -f a j - r , k - s a r - p . g - q a p q + E F J - 3 8 k 0  
P.9.  
r ,  s 

where the summation is for 0 C p G r =s j and 0 C q C s s k and where 

The values of the first few coefficients in (2 .8 )  are easily found to be 

a,, = 2i ala= -ih/3 a,,= -ih2/18 a,, = - ih3 /27  - &E;b/4. 

There are resonances for a40 and uol; a.,, is the compatibility condition of the resonance 
imposing the choice of a,, , namely 

a,, =4ih4 /135+i~(hFo+  Fl). 

The value of the coefficient aoL plays a particularly significant role in all of the 
subsequent analysis. Again to and a4, constitute the two pieces of arbitrary data 
entering into the (formally) self-consistent expansion ( 2 . 7 ) .  

Following the procedure described in I we now look for a closed set of recursion 
relations amongst the ajk. These are the set a O k ,  k = 0, 1 , 2 ,  . . . , which satisfy 

4 k (  k - 1 )aOk + k a O k  + f QOk = -g 1 aO,k-raO,s-qaOq 
' 9  

where the summation is for 0 s q s s G k. Introducing the generating function 
cx 

@ ( z ) =  1 a0k.Z' 
k = O  

(2 .10)  

where z is some (as yet unspecified) independent variable, the following differential 
equation for 0 ( z )  is obtained: 

16z20"(  Z )  + 4 ~ 0 ' (  Z )  + 2 0 (  2) +io'( Z )  = 0 (2.11)  

where the prime denotes differentiation with respect to z. (This is, to within a trivial 
scaling, identical to equation (A5) obtained in I . )  

The differential equation (2 .11)  may be obtained via a different, more direct, route 
using the procedure described in 11. In the limit t -+ to we concentrate on the terms in 
the psi series (2 .7 )  involving powers of t 4  In t and therefore make the substitution 

1 
4 0  =-0,(z)  t - to (2 .12)  
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where 

z = ( t  - In( t - to) (2.13) 

into equation (2.4) (or for that matter equations (2.3) or (2.2)). In the limit t -$ to it is 
easy to show formally that O0(z) again satisfies equation (2.11), provided that there 
is an  ordering in which I t  - to/ << IzI. Due to the infinite multivaluedness of the logarithm 
this is indeed perfectly possible for large (absolute) values of the argument of ( t  - to). 
We remark that for a psi series involving complex powers, i.e. z = ( t  - to)*, where a is 
the relevant complex exponent, one can provide similar arguments (see 11) to justify 
the dominance of these terms in the limit t- ,  to. In both situations this asymptotic 
approach and the closed recursion relations approach yield the same equation. 
Moreover, according to our numerical explorations, the validity of the result deduced 
in this way is not limited to high-index sheets of the Riemann t-surface. A partial 
explanation of this success is given in 0 5,  where we study a systematic resummation 
of the psi series in terms of a certain set of functions of z-of which 0, is the leading 
term (hence the subscript zero). In this section we just concentrate on the properties 
of 0,. Finally, we also comment that this approach can be thought of as a type of 
‘renormalisation’ in that the differential equation (2.1 1 )  can be regarded as the original 
equation of motion ‘rescaled’ in the neighbourhood of a given singularity. However, 
it is interesting to note that now (2.11) possesses the ‘Painlevi property’ since it is 
easily demonstrated that about an  arbitrary movable singularity (say at z = zo) O0(z) 
has the Laurent series expansion 

where (see also I )  

A4 = arbitrary. 
5 

A , = -  
5 A 5 

8 ZO 64zi 1282; Ao= 1 A,  =- 2 -  

Remarkably equation (2.11) may be integrated exactly in terms of elliptic functions 
by making the substitution 

O0( z) = z””( 21’4) (2.15) 

which leads to the equation 

Y ( ~ ) + ; ~ ~ ( ~ ) = O  (2.16) 

where the prime denotes differentiation with respect to the variable y = z ” ~  = t(ln t)”4. 
In  keeping with the idea of ‘renormalisation’ we again stress that through the two-step 
transformation ((2.12) and (2.15) ) the general Duffing equation (2.4) has been locally 
mapped onto the integrable case (2.1) (identical to (2.16)). We now proceed to the 
complete solution of (2.16). The first integral of (2.16) is just 

(f’)’+if4= I ,  (2.17) 

where one may determine that I, = -20ia0,. By means of the simple scaling f( y )  = 
2(I,/4)”“g((ZI/4)””y) (2.17) is reduced to the standard form for integration in terms 
of elliptic functions yielding 

g ( j )  = *id2 d s ( J 2 ( j - j O ) )  (2.18) 



38 J D Fournier, C Levine and  M Tabor 

where jjo is some initial phase and the elliptic function parameter m = +  (lemniscate 
case). The function d s ( u )  has the standard (see the appendix for a summary of 
pertinent results) rectangular lattice of (first-order) poles with real and imaginary 
periods 4 K  (+) and 4iK’(4) where K and K ’  are the standard modulus and  complemen- 
tary modulus respectively. For this particular case K = K ’  and hence the poles lie on 
a square lattice with spacing 2K. Back on the y-plane the function f( y )  has the same 
lattice but scaled and  rotated about the origin in the y-plane by an  amount determined 
by the (in general) complex-valued first integral I , .  The compatibility of the asymptotic 
behaviour of Oo, f and g for z + 0, y + 0, j + yo ,  imposes the choice j, = 0 and the 
value I ,  = -20ia,, . Thus finally one has 

(2.19) 

The pole positions, labelled by the lattice site integers 1, m, are given by 

where T,,,, are the corresponding positions in the t-plane. 
From these results the following picture of singularity clustering emerges. To each 

singularity to in the complex t-domain one can attach an associated y-plane. The 
lattice of singularities in the y-plane, as given by (2.20), is then mapped (back) into 
the t-space according to the multivalued transformation z = t 4  In t .  An immensely 
complicated, multisheeted structure in the t-space can be envisaged with the degree 
of clustering (about a given t o )  determined by both the degree of ‘scaling’ and ‘rotating’ 
in the y-plane and the intricacies of the mapping z + t. Furthermore any one of these 
singularities in the r-space can have its own clustered sub-structure. The recursive 
nature of this clustering can clearly lead to a singularity structure of pathological 
complexity. Some preliminary numerical results, which strikingly confirm our predic- 
tions, will be described later. Despite this complexity there is a rather remarkable 
feature of the above analysis. Combining equations (2.12), (2.15) and (2.19) leads to 
an explicit local expression for -U( t )  which accurately predicts the location and nature 
of neighbouring singularities. Coupled with the higher-order terms (described in 0 5 )  
this therefore provides, in effect, an integration of motion traditionally regarded as 
‘non-integrable’ and, for some parameter values, even known to exhibit chaos. 

There are a variety of subcases of the general result (2.19) and (2.20) that we 
mention explicitly. 

( i)  A # 0, E =0,  i.e. system (2.2). Here the first integral of (2.17) is I ,  = 16A4/27 
and one obtains 

(2.21a) 

(2.21b) 

In this case the fundamental lattice is shrunk (or  dilated) but not rotated. However, 
the numerical results seem to show that there is no singularity clustering in the complex 
t-domain according to this scheme. Since clustering is observed for all the other cases 
this suggests here that either the local transformation (2.12) is in some sense global 
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or that the radius of convergence of the asymptotic analysis is always less than the 
distance of the nearest poles to the origin of the y-plane. 

(ii) A =0 ,  E # 0, i.e. system (2.3). Here the first integral of (2.17) is I, = -4ieF, 
and one obtains 

f( y )  = 2iJ2 e- '" 's(~F1)1'4 d s [ J 2  e-ix' '((eFl)1~4y] (2.22a) 

(2.22b) 

Now the fundamental lattice is both shrunk (or dilated) and rotated. Clearly the exact 
value of F1 plays an important role. For those cases where it is zero the expansion 
about to reverts to a pure Laurent series. This can either occur for ( a )  F (  t )  = 
constant-in which case (2.2) is integrable in terms of elliptic functions-or (b )  a freak 
value of to for non-trivial F ( t ) .  

(iii) A # 0, E # 0, i.e. the general system (2.4). There are a couple of interesting 
subcases here. 

( a )  -AF, = F , :  the lattice 'distortion' is reduced to a simple scaling, i.e. 

y,, = T,, ln1/4 T,, = (271'4/A)K(;)(1+im). (2.23) 

Such a situation could arise for a driving force of the form F (  t )  = A e-"'. 
( b )  4A4/27i = e(AF,+ F l ) :  this corresponds to a,, in (2.7) vanishing, i.e. the singu- 

larity is locally meromorphic. In this case eo, in (2.12), reverts to the role of the 
leading-order coefficient 0, = a,, = 2i. 

3. The mapping function t = r4 In r 

A crucial part of our analysis is to determine the way in which the lattice of poles in 
t h e y  = z " ~  plane maps back into the r-plane. For convenience we set the pole position 
t ,=O in (2.13) and work with 

(3.1) 

(3.2) 

z = t4  In t. 

The trick is to use polar coordinates in both the z- and t-planes. Setting 
z = p ei* 

and 

(3.3) 

Rez=r4 [cos (46) In  r - (6+27rn ) s in (46) ]  (3.4~1) 

Im z = r4[sin(46) In r + (6 + 2 m )  c o s ( 4 ~ ) I  (3.4b) 
where n is the Riemann sheet index in the t-plane. From this pair of equations one 
may easily determine that 

In r + (6 + 27rn) cot(46) 
In r - ( 6 + 2 m )  t an (46)  

10 t = r e  

we have from (3.1) that 

tan q~ = tan(4.9) 

and hence 
= e - I t Y + 2 n n ) c o r 1 4 1 Y - ~ ~  

(3.5) 
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Using this result in (say) equation ( 3 . 4 ~ )  one may then deduce that 

(sin(46 - cp) ) - ' .  (3.6) 

The pair of equations (3.5) and (3.6) completely determine the mapping. A given pole 
in the y-plane is assigned polar coordinates p',  cp' (where y = p' e'") from which 
p = ( P ' ) ~  and cp = 4 ~ '  are readily computed. From (3.6) one may then 'read off' (in 
practice this corresponds to a simple numerical root search) the value of 4, for any 
sheet n, corresponding to the given (p ,  cp) values. From this value of 6 the associated 
radial coordinate r is computed from equation (3.5). In figure 1, we plot the function 
p ( 6 )  against 6, for the 6 range ((9/4,27r+ cp/4), for the choice n = 0 and with cp # 0. 
As expected 8 is a four-valued function of p (the negative branches are ignored since 
p is positive) although it is not quite periodic due to the 6 + 2 m  pre-exponential 
factor. For a fixed n the effect of changing cp on p ( 6 )  is merely to shift the whole 
function. For a fixed cp the effect of changing n is most significant (although almost 
imperceptible on a plot such as figure 1) for small n. The following mapping picture 
emerges: a given pole in the y-plane maps to four points in the t-plane for each sheet. 
The cumulative effect for large positive n is a four arm 'star-like' structure as shown 
in figure 2 (for the model choice p = 1, cp = 0). As can be seen from this diagram the 
star is not perfectly symmetrical-the arms have a slight twist and the singularities 
become more densely 'packed' along each arm as they approach the centre of the star 
as n increases. The same overall picture would, of course, emerge for large negative 
n thereby providing a 'mirror image' of the positive n structure. 

= - ( 6 + 2 . r r n )  e - 4 ( 8 + 2 m ) C O t ( 4 8 - v )  

3 - l p i L  

Figure 1. Plot of p (  0 )  against 0 as determined by equation (3 .6 )  

Some analytical estimates of the 'star' geometry can be obtained in the following 
way. From figure 1 we see, to a first approximation, that p(  8) is either zero or infinity. 
Thus it is reasonable to study the behaviour of p ( 8 )  at those points for which 
cos(48 - cp) = 0, i.e. 

m = 1 , 3 , 5 , 7 . .  . cpr 5 7  8=-+-+m- 
4 8  4 

where the m is chosen to keep the angle in the correct quadrant. Now for this angle 
we may deduce from (3.6) that 
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R e  z i 
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+ 
+ 

\ + 

t I Re Y 
+ 

- 
+ 

+ 

.. . . 

-1 0 
R e  t 

1 

Figure 2. Result of mapping a single pole from the y-plane to the I-plane using equation 
(3.6) for model choice of p = 1, cp = 0. 

In order to consider the changes in r along any one arm of the star we must set m = 8p 
and thereby obtain 

where 

Choosing the particular case cp = 0 enables us to see that rp = roll + 16p/31-L/4-an 
estimate that is born out well by the numerical results. This result also suggests that 

Figure 3. Schematic representation of the way in which the standard lattice of poles can 
be shrunk and rotated in the y-plane (as determined by equation (2.20)). Note that the 
poles form families of four that can be inscribed in circles of increasing radius. 
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in the limit p + CO, rp + 0, the arms will, albeit very slowly, gradually reach the central 
singularity to .  However, it should be recalled that each member of a given arm is on 
a different sheet or that this accumulation corresponds to (infinite) multivaluation 
near t o .  

It seems reasonable to assume that the singularities nearest the y-plane origin 
(equivalent to the point to in the t-plane) will play the dominant role in determining 
the t-plane structure. Since the lattice of poles in the y-plane (even after scaling and 
rotation) is square, the poles form sets of four which may be inscribed in circles of 
given radius p ’ .  Furthermore the members of each set become equivalent under the 
transformation z = y 4  and thus one only requires the radius (i.e. p ’ )  of each circle of 
poles and their orientation (i.e. cp’). This idea is sketched diagrammatically in figure 
3. In practice (see § 4) we find that mapping just the first two circles of poles is in 
general sufficient to explain the observed singularity structure. 

4. Numerical results 

For our numerical studies of the singularity structure of the Duffing equation in the 
complex t-plane we have used a version of the ATOMCC integrator, developed by Chang 
and Corliss [20], implemented in double precision, on an I B M  PC-XT. With this program 
it is possible to integrate an ordinary differential equation on any piecewise linear path 
in the complex t-plane. At each step the program reports the solution and the position 
and order of the nearest singularity. By suitable choice of integration paths one can 
build up a picture of the complex t-plane on any scale desired. 

In figure 4 we show a portion of the complex t-plane for the completely integrable 
system (2.1). The program reproduces, to a high degree of accuracy, the expected 
square lattice of first-order poles. The periodicity of the real time oscillations (not 
shown here) is, in keeping with standard results, twice that of the pole spacing. 

In figure 5 we display a typical t-domain picture for the damped oscillator (2.2). 
As the damping h is added the singularities are ‘swept’ away from the real axis in the 
manner shown. To leading order the singularities are first-order poles but, as expected, 
are demonstrably multivalued when repeated circuits are made about them. As men- 
tioned in § 2 no singularity clustering was detected in our numerical studies. 

R e  t 

Figure4. Square lattice of poles found in typical solution of (2 .1)  using ATOMCC. 
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I 

I 
0 10 20 

Re t 

Figure 5. Singularity distribution in the complex r-domain of a solution to the damped 
oscillator (2 .2)  with A =0.1. 

Almost all of the following numerical results have been obtained with the undamped 
driven system (2.3) since this is the case for which further analytical results, as described 
in the next section, have been obtained. Numerical results for the damped driven 
equation (2.4) show the same basic features as those described below and  for complete- 
ness we just show one such result later on. A typical ‘global’ complex t-domain 
structure for equation (2.3) is shown in figure 6. As the driving term is added the 
regular lattice gradually distorts into the structure shown. It is important to note that 
the singularities shown forming the main ‘tunnel’ structures are all on the lowest 
Riemann sheet-this is ensured by starting all integration paths on the real axis and 
checking that no path goes around any of the singularities as they are detected. The 
‘chimney-like’ structure seems to be characteristic of non-integrable systems. It was 
observed for the Henon-Heiles system [3] and more recently for the Duffing equation 
[lo]. Although our primary concern here is with local structure we comment in passing 

0 
65 70 

R e  t 

Figure 6. Typical singularity distribution in complex !-domain for a solution of the undam- 
ped Duffingoscillator (2 .3)  with E = 5.0. Accentuated poles (heavy dots) indicate commonly 
observed ‘tunnel’ structures. 
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2 

-I- 

E - 
1 .  

that these chimneys appear, on the basis of simple analytical arguments, to close at 
an exponential rate. 

We now look, in figure 7, at the detailed, local structure in the neighbourhood of 
the singularity marked with the arrow in figure 6 .  The picture is built up by making 
careful repeated circuits of the ‘central’ singularity. The star-like structure observed 
can be explained in terms of the mapping described in the previous section. The five 
‘arms’ of singularities correspond to a set of three (at 10, 1 and 4 o’clock) and a set 
of two (at 11 and 2 o’clock). The former set are three out of the four arms obtained 
by mapping the circle of poles nearest the origin of the corresponding r-plane back 
onto the t-plane. The other two are part of the ‘star’ obtained from next-nearest 
singularity set in the z-plane. If formulae ( 2 . 2 2 ) ,  with the corresponding parameter 
values, are used to determine the precise scale and orientation of the y-plane lattice 
the star-like patterns generated in the t-domain by solving the mapping equations (3.5) 
and (3.6) are in good agreement with the observed numerical solutions. The fact that 
some of the ‘arms’ are missing in figure 7 seems to be some artefact associated with 
(as yet not understood) difficulties in taking ATOMCC along integration paths across 
the real axis. 

A critical test of our clustering theory is that it should be recursive. This is nicely 
confirmed in figure 8. Here the detailed structure in the neighbourhood of the arrowed 

I Q ]  

,.. . .. 

‘.. . 

I 
6 L  65 66 6 1  60 

Re t 
Figure 7. ( a )  Detailed local singularity structure, found using ATOMCC, in neighbourhood 
of marked singularity in figure 6. ( 6 )  Local singularity structure determined from the 
analytical mapping (3.6) with the parameters in (2.20) being chosen to correspond with 
the actual numerical results of ( a ) .  
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Figure 8. ( a )  Detailed local singularity structure, found using ATOMCC, in neighbourhood 
of marked singularity in figure 7 ( a ) .  ( b )  Corresponding structure determined by analytical 
mapping. 

singularity in figure 7 is shown. The scale and orientation of the eight ‘arms’ of 
singularities agree well with the results obtained from the mapping theory when the 
nearest and next-nearest (to the origin of the associated y-plane) singularities are used. 
Further confirmation of the recursive nature of the clustering is provided by figure 9 
which shows the neighbourhood of the arrowed singularity in figure 8. Here only one 
four-arm ‘star’ was detected-but again its scale and orientation were found to be in 
good agreement with the mapping theory. Finally, in figure 10 we show a case of 
clustering for A # 0-again good agreement between theory and numerical experiment 
is obtained. 

A rather remarkable feature of the agreement between the numerical results and 
the clustering theory based on the mapping (3.1) is that it should work over such large 
portions of the t-domain with apparently little regard to the (presumably small) radius 
of convergence of the original psi series (2 .7) .  This is a matter that clearly deserves 
further investigation. 

5. An alternative asymptotic expansion 

As alluded to in the previous section the substitution (2.12) can be thought of as just 
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... , 
, 

6L 6 5  66 61 6 
Re t 

Figure 9. ( a )  Detailed local singularity structure, found using ATOMCC, in the neighbour- 
hood of the marked singularity in figure 8( a ) .  ( b )  Corresponding structure determined by 
analytical mapping. 

the first term in a more general expansion of the form 

(5.1) 

where z = t 4  In and for notational convenience we have set to = 0. Substitution of 
(5 .1)  into any of (2.2), (2.3) or  (2.4) and taking the limit t -+ 0 leads to a hierarchy of 
coupled differential equations for the @ k ,  i.e. 

k = O  1 6 ~ ~ 6 ~ + 4 2 6 ~ + 2 O ~ + ~ O ~  = 0 (5.2~1) 

k = l  1 6 z 2 6 , +  1 2 2 0 , + ~ 0 , 0 ~ = A ( 0 0 - 4 2 0 , )  (5.2b) 

k = 2  16z2& + = - ~ 4 z 6 ,  -@,o: ( 5 . 2 4  

k = 3  1 6 ~ ~ 6 ~  +4(2k+ 1)zQk +[( k - l ) ( k  -2)+50i ]Ok 

. . . .  
All the differential equations for Okk 2 1 are linear inhomogeneous equations. The 
general homogeneous counterpart is just 

16z26k +4(2k + l ) ~ 6 ,  + [3@b+ ( k  - I)( k - 2 ) ] O ,  = O  k z  1 .  (5.3) 
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Figure 10. ( a )  Typical local singularity structure, found using ATOMCC for damped, driven 
oscillator (2.4) with A = 0.1, E = 5.0. ( b )  Corresponding structure determined by analytical 
mapping. 

Remarkably this equation can be solved exactly by making the substitution 

k z 0  (5.4) 1/4 I - k  @ k ( z ) = ( 2  (Lk(ZI  ‘) 

which, with a little manipulation, reduces (5.3) to 

for the functions $ k ,  k 2 1 .  Now from 0 2 we have cLo(y) = j ( y )  = ZicrCx,( C y )  where 
C is some scaling factor and  xo is the Jacobi function d s  with m =f. Thus 

( i ; k ( y ) - 6 C 2  ds*(Cy)(L,(y)=O k 2  1. 

Equation (5.5) is further simplified by the global rescaling (Lk(y) = 2iuCxk( C y )  and the 
identity B(5) = ds2(5), where B(5) is the Weierstrass elliptic function. The function 
xk (0, solution of the homogeneous counterpart of system (5.2), satisfies 

1 .. -xk = a ( a  + l )B a = 2 ,  k z  1 
xk 

(5.6) 
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a form of the Lam6 equation [ 2 1 ]  for which a variety of standard results are readily 
available [ 2 1 , 2 2 ] .  For equation ( 5 . 6 ) ,  standard Fuchsian theory [ 2 2 ]  tells us that there 
is one solution of the form 

x:"(5) = ( 5 - 2 q w  -2qlw')a+I W ( 5 )  4, q 1 €  z ( 5 . 7 )  
where w and w' are the fundamental periods of P(5) and W ( 5 )  is analytic in the 
domain of the point 2qw + 2q'w' and not zero at that point. The second solution is 
given by 

Thus xk(5) can either have third-order zeros, i.e. 

or second-order poles, i.e. 

x k ( 6 )  - ( 5 . 9 6 )  
where tC is one of the lattice sites 2qw + 2q'w' or the origin (i.e. & = 0). At first sight 
this latter result is rather perturbing since it suggests that the solution, as represented 
by the series (5 .1) ,  could exhibit second-order poles whereas the original differential 
equation can support only first-order singularities. However, it turns out that the 
presence of the inhomogeneous terms in the full equations ( 5 . 2 )  cause some remarkable 
cancellations that nullify this problem. In the case of the non-dissipative driven system, 
i.e. equation ( 2 . 3 ) ,  we are able to demonstrate this explicitly to sufficiently high order 
in k to suggest that it is a general result and hence establish the validity of the expansion 
( 5 . 1 ) .  

Applying the various changes of variable and scalings described above to the 
hierarchy of inhomogeneous equations ( 5 . 2 )  with A =0,  we obtain for the functions 

k = O  xo- 2x;  = 0 ( 5 . 1 0 a )  
k = l  XI - ~ x ; x ,  = 0 (5 .10b)  
k = 2  X2 - 6xix2 = 6 x 0 ~ :  ( 5 . 1 0 ~ )  
k = 3  x 3 - 6 x ; x ,  = - - f i u e F ~ / C 3 + 1 2 x o x 1 x 2 + 2 x ~  ( 5 . 1 0 d )  

x k ( 5 ) ,  

1. F 1  1 1  3 1  
k = 4  X, - 6xix4  = - -I U E  7 5 + - - XO - - -Xo 

2 c 45' 4 5  

where 

k>h,l,m&-O 
h + l + m = k  

In order for the expansion ( 5 . 1 )  to have consistent analytic properties we must 
seek those @ k  that are regular at the origin z = O  and whose possible singularities 
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elsewhere are simple poles. In  terms of the xk this means 

where tr # 0 and at 5 = 0 

xk(5) = o(5"'). 
6-0 

Indeed for the latter case we may write 

that at pole positions 5' 
( 5 . 1 1 ~ )  

(5 .1  1 b )  

( 5 . 1 1 ~ )  

(5.11d) 

The (particular) solution to the general inhomogeneous equation (5.lOf) takes the 
standard form 

(5.12) 

where X I ( ( )  and xl1(5) are two, linearly independent, solutions to the associated 
homogeneous problem and 

A ( 5 )  = Xl(5),-il1(5) - XI1(5)~1(5) 

is the Wronskian. It is a straightforward matter to show that 

xd5)  = dS(5) ( 5 . 1 3 ~ )  

is a solution (take the derivative of (5.10a),  for which ds  is a solution, of 0 2). 
We then write (cf (5.8)) 

X I l ( 5 )  = H(5)XI(5). (5.13 b )  

Up to a multiplicative constant H ( 5 )  has to satisfy f i(5) = l/(dS(<))*. 
In the appendix we show that 

(5.14) 

is a solution; on dropping the constant terms and multiplicative factors we can redefine 

xi(&) = dS(5) ( 5 . 1 5 ~ )  

with 

A(&) = -4. 

(5.15 b )  

(5.15~) 

The overbar in (5.15b) denotes that all terms under it should be differentiated WRT 5. 
(This is not the most elegant notation but makes some of the ensuing expressions more 
compact.) Using the results (5.15) the solution (5 .12)  takes the form 

x k ( 5 ) = 2 d S  x , , ( t ) R k ( t ) d r - 2 5 d s  x , ( t ) R k ( t ) d t .  I' -I' (5.16) 
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Using this result we can now analyse the system of equations (5.10) and determine 
the conditions under which their solutions behave in the desired fashion, i.e. no 
singularity at 5 = 0 and only simple poles elsewhere. 

k = 1 (5.10b). Here R ,  = O  and the only linear combination of x, and x,, which 
satisfies the required behaviour is the trivial one 

XI(5) = 0. (5.17) 

k = 2  ( 5 . 1 0 ~ ) .  Here R2=0 by virtue of (5.17) and again we have the trivial result 

Xd5) = 0. (5.18) 

k = 3  (5.10d). With (5.17) and (5.18) R, is a constant, i.e. 

R3(5) = -fiuEFg/ C’. 

The general solution is thus 

x3(5)= -2R3[ds2-p l  d S + p 2 s ]  (5.19) 

where pl and p2 are constants of integration. To ensure regularity at 5 = 0  (some 
useful expansions are listed in the appendix) one must have pul = - 1 .  Thus (5.19) 
becomes 

~ ~ ( 5 )  = - 2 ~ , ( d s ’ + d ~ )  - - 2 p 2 ~ , 5 Z  (5.20) 

where the first term on the right-hand side is an  entire function and the second term 
can exhibit second-order poles. To remove this feature we must set p 2 = 0  thereby 
obtaining 

Fn 
C 

x3(5) =ias,[ds2([)+dS(5)] 

which is an  entire function. 
k = 4. By virtue of the above results (5.10e) now takes the form 

(5.21) 

(5.22) 

and we look for a solution behaving as 
- 

x4 = x4(3+ , . . .  
+n 

The left-hand side of (5.22) for small 5 behaves as 

and the right-hand side behaves as (using the Laurent expansion for d s  given in the 
appendix) 

- -U€:[+-  i F, l [ l  -+-[ l ] - : [  --+-C 1 3 3  -- 1 [ 2  -+-6 3 3  +O((’) 
2 C 4 t3 40 5, 40 2 5’ 20 

= [ - i u S - ~ ] ~ ~ + 0 ( ~ 2 ) .  c4 4 2 

The compatibility of (5.23) and (5.24) is ensured if and only if 

C =a( - i u ~ F , ) ” ~ .  

(5.24) 

(5.25) 
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Thus the ‘free’ constant C has now been fixed in terms of the forcing function. 
Furthermore use of (5.22) now ensures that near any other singularity tc (& # 0) of 
x O ( 6 )  = d s ( t ) ,  x4 behaves as 

x4(t) -act- & I - ’  (5.26) 

which is the desired result. (Note that a vanishing F ,  leads to a breakdown of the 
results.) 

k 2 5. The above arguments can be applied to all the ensuing equations, i.e. k 3 5. 
However an explicit proof that the functions xk ( k  3 5) behave in the desired manner 
becomes ever more tedious since for each k one needs to know the explicit form of 
the preceding functions and we did not succeed in finding a recurrence type proof. 
To summarise we claim the general behaviour is as follows: 

x k ( t )  entire with X k ( 5 )  = o(&- tc)2 if k # 0 (mod 4) 
C-& 

and 

X k ( 5 )  meromorphic with x k ( t )  = O ( t -  if k = 0 (mod 4) 
5-6, 

where tC ( &  # 0) is a pole of the Jacobi elliptic function and 

where xk is defined in (5.11d). Thus collecting all the above results we claim that x ( t )  
can be represented as 

x( t )=2imC(ln t)”4 ds(Ct(1n c (In t ) - k ’ 4 ~ k ( C f ( l n  (5.27) 
h a 3  

An instructive way of regarding the expansion (5.1) is to compare it directly with 
the psi-series expansion (2.7) and recognise that each 0, is the generating function 
for the set of coefficients a,k, i.e. 

X 

O,(z)= c q k z k  (5.28) 
k = O  

where z = t4  In t. For the case j  = 0 the recursion relations for the a o k  are closed whereas 
for all other cases they are coupled to preceding coefficients. From this point of view 
we may regard (5.27) as a resummation of the psi series (2.7). Furthermore the 
properties of the table of coefficients a,k provides additional confirmation of the analysis 
in this section. Thus, for example, for the case considered here, i.e. the system (2.3), 
the columns of coefficients alk and u Z k ,  k = 0 , .  . . ,CO, are all found from (2.8) to be 
zero thereby confirming our conclusion that x ,  = x2 = 0 .  
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Appendix 

We first summarise the basic properties of the Jacobi d s  function. (Our primary source 
is Abramowitz and Stegun [23] which we will denote by AS followed by the relevant 
equation number where appropriate.) 

For the Lemniscate case, m = f ,  one has (AS 16.9.4) 

dn2 l-isn’ 1 1 
sn2 sn2 sn2 2 

ds2 = - = - 

and for the associated Weierstrass function 9 

e ,  - e3 ??=e,+ 
sn’[z( e ,  - e3)”’] 

with (AS 18.14) 

e, = 0 e ,  + e, = 0 e ,  - e3 = I 

and hence 

9 = ds2 

with the moduli (AS 18.14) 

K ( i )  = w = K’(f) = 1.854. .  . 
For m = &  the two moduli are equal, the function d s  is odd and its poles and zeros 
are on a double square lattice. The basic spacing is 2 K and the function periodic with 
period 4K, 4iK’, 2K +2iK‘. Finally it is easy to show (using AS 16.16) that d s  satisfies 
the differential equation 

d s  = 2 ds3 

for m = f .  

H ( 5 )  must satisfy 
We now turn to the derivation of equation (5.14). Up to multiplicative constant 

For the case m =; one has (AS 16.9, 16.16) 

---- - sc2snZ = ( n c 2 -  1 ) ( 1 -  cn2) = nc2+ c n 2 - 2 .  1 1 
(di) , -  cs2ns2 

Using a change of argument (AS 16.8) this can be rewritten as 

-- 1 - 2[ds2(5 - K )  - ds2(5 - i K )  - 1 3  
(di)’  

which on using the result 9 = ds2 and the definition 9 = -4 finally yields 

H ( 5 )  = 2[-5(5- K )  + 5 ( 5 - i K )  - 51 
up to an additive constant. From the pseudo-addition law (AS 18.4.3) and the values 
of the half periods in the lemniscate case (AS 18.14.8-10) this can be written as 

293-f  29+f‘ 
7T H ( 5 ) = 2  ( l+ i ) - - [ - - -+- -  ( 4K 
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Again using the particular properties of the m = i case for the differential equation 
satisfied by 9, i.e. 

9'=49[S2-3 

and the relation 9' = ds2 enables one to obtain 

which is the desired result. 

hood of any pole z,. (Here z means z-z,.) 
Finally we list the expansions of the Jacobi function ds  with m = i in the neighbour- 

z"SO(z'5) 1 1  1 
z 40 9600 2 ~ 1 0 ~  

ds(  z )  = -+-Z' +-Z' + - 
7 11 

zi0+0(zi4) 1 3  
z 40 9600 2 x  lo6 

dS(z) = -T+-z~+-z~+-  

2 3  
dS'(z) = ,+-z + O(z5) 

z 20 

1 1  
[ds(z)12 = 7 + - z 2 +  0 ( z 6 ) .  

z 20 

In the neighbourhood of any pole z, # 0 

Z' 1 
Z - Z ~  40 40 

z ds(z) = -+ 1 +lC( z - z , ) ~  +-( z - z , ) ~  + O[ ( z - Z, )'I 

z, 3z, 1 
10 

+ - ( 2  - Z,)* + - (z  - z, ) 3  + O[ (z  - z, 1". z d s ( z ) =  -- 
(z -z , )  40 

In the neighbourhood of zero 

l1 Z"+O(Z'6) 
1 1 

z ds(z) = 1+-z4+-z4+- 
40 9600 2 x  lo6 

- 1  1 6 
z ds(z)  = -Z'+-Z'+-Z'' + O(z"). 

10 1200 lo6 
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